Showing posts with label organic/inorganic hybrid. Show all posts
Showing posts with label organic/inorganic hybrid. Show all posts

Sunday, July 19, 2009

The biomolecular interface and the definition of living

Definitional and classification issues often arise in any field of heightened focus and progress (e.g.; what is a planet?). For the many fields integrating organic and inorganic materials, an interesting issue comes up as to what is the definition of life. Many different gradations of living things are emerging.

Some interesting new cases of living materials are the idea of organic sensors made of biomaterial placed on buildings, self-replicating crystals and biological scaffolding for stem cell grown organs and 3D tissue printing.

De novo materials synthesis
One exciting aspect of the living/non-living classification is the new synthesis of both organic and inorganic materials. Scientists are creating de novo engineered proteins and other biological materials, non-naturally occurring inorganic materials with superior properties using molecular manufacturing techniques and hybrid organic-inorganic materials, with the best of organic and inorganic properties in one object, for example rotaxanes which could be used in quantum computing.

Definition of integration
Not just the definition of what is living arises, but also the definition of the integration of organic and inorganic materials. Alan H. Goldstein proposes that a true integration of organic and inorganic material involves communicating back and forth, not just a system which has properties or components of both organic and inorganic systems.


The future of biomolecular interfaces
The future of biomolecular interfaces is probably a further blurring of the underlying substrates as the focus is more relevantly on the properties and requirements of any challenge at hand.

Sunday, May 24, 2009

Expanding notion of Computing

As we push to extend inorganic Moore’s Law computing to ever-smaller nodes, and simultaneously attempt to understand and manipulate existing high-performance nanoscale computers known as biology, it is becoming obvious that the notion of computing is expanding. The definition, models and realms of computation are all being extended.

Computing models are growing
At the most basic level, how to do computing (the computing model) is certainly changing. As illustrated in Figure 1, the traditional linear Von Neumann model is being extended with new materials, 3D architectures, molecular electronics and solar transistors. Novel computing models are being investigated such as quantum computing, parallel architectures, cloud computing, liquid computing and the cell broadband architecture like that used in the IBM Roadrunner supercomputer. Biological computing models and biology as a substrate are also under exploration with 3D DNA nanotechnology, DNA computing, biosensors, synthetic biology, cellular colonies and bacterial intelligence, and the discovery of novel computing paradigms existing in biology such as the topological equations by which ciliate DNA is encrypted.

Figure 1. Evolving computational models (source)

Computing definition and realms are growing
At another level, subtly but importantly, where to do computing is changing from specialized locations the size of a large room in the 1970s to the destktop to the laptop, netbook and mobile device and smartphone. At present computers are still made of inorganic materials but introducing a variety of organic materials computing mechisms helps to expand the definition of what computing is. Ubiquitous sensors, personalized home electricity monitors, self-adjusting biofuels, molecular motors and biological computers do not sound like the traditional concept of computing. True next-generation drugs could be in the form of molecular machines. Organic components or organic/inorganic hybrid components, as the distinction dissolves, could be added to many object such as the smartphone. A mini-NMR or mini-Imager for mobile medical diagnostics from a disposable finger-prick blood sample would be an obvious addition.