Showing posts with label memory. Show all posts
Showing posts with label memory. Show all posts

Monday, March 30, 2015

Blockchain Thinking: The Brain as a DAC (Decentralized Autonomous Corporation)

Blockchains are a new form of information technology that could have several important future applications. They could be an explosive operational venue for new kinds of autonomous agents like DACs, distributed autonomous corporations. A DAC is a corporation run without any human involvement through a set of business rules based in software code. It is called a ‘corporation’ because it typically engages in corporate operations like fundraising, providing services, and making profits for shareholders. Blockchains are a software protocol upon which digital cryptocurrencies like Bitcoin run.

One potential application is blockchain thinking, formulating thinking as a blockchain process. This could have benefits for both artificial intelligence and human enhancement, and their potential integration. Blockchain thinking could be conceived as an input-processing-output computational system with several features whose benefits might include the ability to orchestrate digital mindfile uploads, advocate for digital intelligences in future timeframes, implement smart-contract based utility functions, instantiate thinking as a power law, and facilitate the enactment of Friendly AI.

Top 4 Killer Apps: Brain as a DAC:
  1. Friendly AI – Digital intelligences will likely not be running in isolation, they will want to conduct operations on smartnetworks that are possibly managed by consensus models or other mechanisms. Any agent wanting to conduct transactions on a smartnetwork will need to be in good reputational standing to do so. Smartnetwork operations could include accessing information and other resources, fund-raising, entering into contracts, and offering services. The consensus only validates and records bonafide transactions from ‘good’ agents. Thus only friendly players would be able to have their transactions executed, and that is how friendly AI could be enacted. There are some objections to this argument, but the key point is that blockchains are a checks-and-balances system that could potentially encourage certain kinds of behavior.
  2. Blockchain Deep-Learners: A crucial moment in AI research was finally having large enough data stores over which to run machine learning algorithms. Google demonstrated this with news, translation, and most recently image recognition of cats in YouTube videos. A similar ‘big data’ argument can be made for thinking where large databases of personal connectome files might lead to an understanding of how thoughts are actually represented in the brain. This understanding could inspire new classes of AI applications. As is currently being explored for EMRs and personal genomes, blockchains could be a useful privacy and access control mechanism for permissioning different parties to the large and sensitive data files more granularly Personal connectome files could also be orchestrated by blockchain processes.
  3. Blockchain Advocates - One of the great potential benefits of blockchains could be instantiating smart contracts as your independent third-party advocates in uncertain future timeframes. An element of the business model that needs to be established is trustworthy oracles for confirming information. The Wikipedia of the future could be a blockchain-based oracle service to look up the current standard for digital mindfile processing, storage, and security as these standards would likely be advancing over time. “You are running on the current standard, Windows 36 and a Lloyd Quantanium 3,” your smart contract valet informs you. Thus, blockchain smart contract advocates could help digital intelligences and AI DACs feel more secure in their future survivability and also humans more comfortable in uploading their digital mindfiles.
  4. Digital Mindfile Services – Already there may be many different representations of you online, and your digital identity. Over time these could become more explicitly a full and fidelitous ‘digital you’ for backup purposes (like stroke rehabilitation) or otherwise. There are already some existing online mindfile services like LifeNaut and CyBeRev. Presumably machine-learning and deep-learning algorithms will eventually crawl the web to assemble ‘digital you’ files in an automated manner, aggregating social media, photos, linkedin profiles, forum comments, academic or other published writings, etc. into a composite you, including with imputations about your value system and goals. Later brain scans and personal connectomes can be added to this data store, as well as real-time lifelogs, memory logs, idea logs, and EEG brain activity logs from quantified self EEG rigs. This could lead to being able to instantiate your mindfile as a DAC and personal thinking blockchains, enabled to carry out digital tasks on your behalf.

Beyond these killer apps of Blockchain Thinking, there could be more sophisticated uses of blockchains for computational thinking. One could be logging all of an agent’s memories and ideas as discrete units that are encoded, stored, and universally-accessible, perhaps with multiple copies and versions (such as the soft-hashing of ideas in development) that are then deployed in smart contract DACs. Another is that processing might be instantiated in a massively distributed architecture that is not available in human brains, yet still comprises the non-linearity of human thought. Third, blockchain thinking might give rise to new forms of consensus models such as self-mining ecologies and proof of intelligence, and make use of demurrage principles to redistribute brain currencies like ideas and long-term potentiation. Blockchains and blockchain thinking might be not just a tool for the immediate progress of intelligence, but also for the longer-term transition to a world of multispecies intelligence living cohesively and productively in digital societies.

More details: Texas Bitcoin Conference Presentation, Paper, Video

Sunday, July 06, 2014

Cognitive Enhancement Memory Management: Retrieval and Blocking

One familiar notion of cognitive enhancement is prescription drugs that boost focus and concentration: ADHD (attention-deficit hyperactivity disorder) medications like Modafinil, Ritalin, Concerta, Metadate, and Methylin [1], and amphetamines like Adderall, Dexedrine, Benzedrine, Methedrine, Preludin, and Dexamyl [1-3]. These drugs are controversial as while there is some documented benefit, there is also a recovery period (implying that sustained use is not possible), and they are often obtained illegally or for nonmedical use.

What is new in memory enhancement drug development is the possibility of targeting specific neural pathways, like long-term potentiation induction and late-phase memory consolidation [4]. A cholinesterase inhibitor, donepezil, which has shown modest benefits in cognition and behavior in the case of Alzheimer’s disease [5], was also seen to enhance the retention performance of healthy middle-aged pilots following training in a flight simulator [6]. Ampakines are benzamide compounds that augment alertness, sustain attention span, and assist in learning and memory (by depolarizing AMPA receptors to enhance rapid excitatory transmission) [7, 8]. The drug molecule MEM 1414 activates an increase in the production of CREB (the cAMP response element-binding protein) by inhibiting the PDE-4 enzyme, which typically breaks it down. Higher CREB production is good for neural enhancement because it generates other synapse-fortifying proteins [4, 9].

Memory management in cognitive enhancement could also include blocking or erasing unwanted memories such as traumatic memories brought on by PTSD (post-traumatic stress disorder). Since even well-established memories require reconsolidation following retrieval, the memory reconsolidation process could be targeted by pharmaceuticals to disrupt or even erase aberrant memories [10]. Critical to memory reconsolidation are the glutamate and b-adrenergic neurotransmitter receptors. These neurotransmitter receptors could be targeted by drug antagonists like scopolamine and propranolol, which bind with these receptors, to induce amnestic effects so that unwanted memories are destabilized on retrieval [11-14].

Summarized from: Boehm, F. Nanomedical Device and Systems Design: Challenges, Possibilities, Visions. CRC Press, 2013. Ch17.
Full article: Nanomedical Cognitive Enhancement  

References:
[1] Weyandt, L.L., Janusis, G., Wilson, K.G., Verdi, G., Paquin, G., Lopes, J., Varejao, M., and Dussault, C., Nonmedical prescription stimulant use among a sample of college students: Relationship with psychological variables. J. Atten. Disord. 13(3), 284–296, 2009.
[2] Varga, M.D., Adderall abuse on college campuses: A comprehensive literature review. J. Evid. Based Soc. Work 9(3), 293–313, 2012.
[3] Teter, C.J., McCabe, S.E., LaGrange, K., Cranford, J.A., and Boyd, C.J., Illicit use of specific prescription stimulants among college students: Prevalence, motives, and routes of administration. Pharmacotherapy 26(10), 1501–1510, 2006.
[4] Farah, M.J., Illes, J., Cook-Deegan, R., Gardner, H., Kandel, E., King, P., Parens, E., Sahakian, B., and Wolpe, P.R., Neurocognitive enhancement: What can we do and what should we do? Nat. Rev. Neurosci. 5(5), 421–425, 2004.
[5] Steele LS, Glazier RH (April 1999). "Is donepezil effective for treating Alzheimer's disease?". Can Fam Physician 45: 917–9. PMC 2328349. PMID 10216789.
[6] Yesavage, J.A., Mumenthaler, M.S., Taylor, J.L., Friedman, L., O’Hara, R., Sheikh, J., Tinklenberg, J., and Whitehouse, P.J., Donepezil and flight simulator performance: Effects on retention of complex skills. Neurology 59(1), 123–125, 2002.
[7] Chang, P.K., Verbich, D., and McKinney, R.A., AMPA receptors as drug targets in neurological disease—Advantages, caveats, and future outlook. Eur. J. Neurosci. 35(12), 1908–1916, 2012.
[8] Arai, A.C. and Kessler, M., Pharmacology of ampakine modulators: From AMPA receptors to synapses and behavior. Curr. Drug Targets 8(5), 583–602, 2007.
[9] Solomon, L.D., The Quest for Human Longevity: Science, Business, and Public Policy. Transaction Publishers, New Brunswick, NJ, 2006, 197pp.
[10] Milton, A.L. and Everitt, B.J., The psychological and neurochemical mechanisms of drug memory reconsolidation: Implications for the treatment of addiction. Eur. J. Neurosci. 31(12), 2308–2319, 2010.
[11] Debiec, J. and LeDoux, J.E., Disruption of reconsolidation but not consolidation of auditory fear conditioning by noradrenergic blockade in the amygdala. Neuroscience 129, 267–272, 2004.
[12] Lee, J.L.C., Milton, A.L., and Everitt, B.J., Reconsolidation and extinction of conditioned fear: Inhibition and potentiation. J. Neurosci. 26, 10051–10056, 2006.
[13] Ferry, B., Roozendaal, B., and McGaugh, J.L., Role of norepinephrine in mediating stress hormone regulation of long-term memory storage: A critical involvement of the amygdala. Biol. Psychiatry 46, 1140–1152, 1999.
[14] Sara, S.J., Roullet, P., and Przybyslawski, J., Consolidation of memory for odor-reward association: รก-adrenergic receptor involvement in the late phase. Learn. Mem. 6, 88–96, 1999.

Sunday, September 01, 2013

Subjective Experience and the Existence of Free Will in Bergson

With burgeoning progression in neuroscience projects across a variety of fields including stem cell generation, brain scanning, and natural language processing, the free will / determinism debate remains vibrant. One resource for understanding the problem is French philosopher Henri Bergson and his claim that free will exists, and can be understood through how time and free will are connected.

Henri Bergson lived 1859-1941. 1900s. He was well-known in philosophy and intellectual culture more broadly in the early 1900s, including for anticipating quantum mechanics 30 years ahead of its discovery due to his assessment of time as being asymmetrical. In the 1960s, the French philosopher Gilles Deleuze reawakened interest in Bergson, highlighting the importance of Bergson’s concepts regarding multiplicity and difference. Now Bergson continues to be relevant to neuroscience and other areas interested in the understanding of subjective experience, free will, and mind/body dualism. Bergson published three masterworks:
  • Time and Free Will: An Essay on the Immediate Data of Consciousness (1889) arguing in favor of free will 
  • Matter and Memory (1896) resolving mind/body dualism with a larger problem frame taking both dimensions into account 
  • Creative Evolution (1907) linking the idea of the time as energy and the energy of time to evolution 
Linking Time and Free Will 
According to Bergson in Time and Free Will, and as explicated by Suzanne Guerlac in Thinking in Time, we cannot treat the inner world of consciousness and subjective experience with the same model we use to understand the physical world. We need to purify concepts from their objective scientific use for the purpose of examining subjective experience, where the important features are the intensity of qualities, the multiplicity of overlapping mental states, and duration, the lived experience of time. Time is a force because it has a causal role in experiences not being the same each time, or over time, and in allowing experiences to accumulate through memory. Time is therefore a force, but an internal force not subject to the laws of nature as external forces. Exactly because time is not governed by mechanistic external forces, it allows room for the exercise of free will. The force of time makes free will possible and we exercise it when we are living in time, tuned into our subjective experience, and acting passionately and decisively. A more accurate conceptualization of our freedom is not in deciding between two alternatives but rather in experiencing free actions carving themselves out of our hesitation as we plunder though the constant becoming of life. 

Further explanation: YouTube video

Sunday, September 04, 2011

Time, complexity, entropy, and the multiverse

FQXi, the Foundational Questions Institute, held a multidisciplinary meeting investigating the Nature of Time in Scandinavia August 27 – September 1, 2011 (Figure 1). FQXi promulgates original thinking and research on fundamental questions in physics and cosmology through research grants and essay-writing contests on topics such as “The Nature of Time,” and “Is Reality Digital or Analog?

Figure 1. Multidisciplinary topics covered at the FQXi Time Conference


Time is familiar in the sense of the three space dimensions and the one time dimension around which human affairs in the physical world are organized. Additionally, each person has a subjective and identifiable relationship to time, even though this may be little more than a convenient construct. In science, time has been developed to the greatest degree in physics and cosmology, and in the philosophy of science. Other fields too are starting to consider time more robustly, including complexity, biology, and computation.

The conference addressed the issue of the arrow of time from many perspectives. While most fundamental laws of nature are time-symmetric, some areas have a time arrow flowing in one direction such as thermodynamics, quantum theory, radiation, and gravity. This can be problematic to explain. A suggested analysis structure involving the trade-offs between complexity and entropy as systems evolve over time served as a useful model for analyzing different aspects of time throughout the meeting.