Showing posts with label cryptography. Show all posts
Showing posts with label cryptography. Show all posts

Wednesday, August 24, 2016

Bio-Cryptoeconomy: Nanorobotic DACs for Cell Repair and Enhancement

Blockchains as the new platform for technological innovation invite the creative imagining of applications at both the level of technology use and in the rethinking of economic principles. Some recent developments include optimism about rising Bitcoin prices and the rewards-halving milestone, trepidation about scalability, block size, and the latest hacking scandal of the Ethereum DAO, and fast-paced single ledger adoption by financial institutions. Beyond excitement over these advances, however, the potential for the deployment of blockchain technology is still wide open across many more sectors and contexts. One speculative imagining for blockchain deployment is the bio-cryptoeconomy. The bio-cryptoeconomy is the idea of harnessing cryptographic principles and economic organizational models, particularly in the form of blockchain-based smart contract DACs (distributed autonomous corporations), to automate large classes of ameliorative processes within the human body. It has long been envisioned that in the farther future, fleets of medical nanorobots might be brought on-board the human body for a variety of pathology resolution and enhancement activities.

Medical nanorobots is the idea of having tiny robotic machines at the nanoscale roving within the human body to perform a variety of health and enhancement operations. While autonomous nanomachines are not immanent, already nanoparticles are being deployed clinically in the human body for dynamically-controllable drug delivery and other functions. In the farther future, medical nanorobots could be a crucial technology for pathology resolution, health maintenance, and cognitive performance enhancement. Some classes of medical nanorobots that have been designed include respirocytes, clottocytes, vasculoids, and microbivores. Medical nanorobots could perform a variety of biophysical clean-up, maintenance, and augmentation tasks in the body. One such therapy might target the removal of cellular waste, for example, disposing of neural lipofuscin (un-decomposable waste particles remaining in the cell lysosome despite normal break-down processes). Neural waste accumulation is theorized to be an aspect of neurodegenerative pathologies like Alzheimer’s disease and Parkinson’s disease. The concept is that medical nanorobots would be like having a fleet of IoT sensors on board the body, coordinated by mass automation, which could be increasingly feasible and secure with blockchain technology.

One of the most urgent medical nanorobotic applications could be combatting life-threatening pathologies such as cancer and heart disease. Disposable medical nanorobots could be used to deliver and activate drugs in specific locations in the body as nanoparticles do now. An important related application could be to provide targeted electrical stimulus to the heart and brain, for example using ultrasound to dissolve blood clots. Another application could be to have medical nanorobots residing more permanently or for fixed time frames in the body for preventive medicine and general maintenance including cell repair and rejuvenation. It is not unthinkable that eventually there could be a nanorobotic DAC in many cells throughout the body coordinated by bio-crypto technology to undertake a variety of repair and enhancement activities.

The Nano Crypto Quantified Self: Radical Blockchain Health Apps of the Future
The sheer scale of simple repetitive activity across the human body’s roughly 37 trillion cells suggests that a completely new kind of automation mechanism might be required to coordinate cellular nanorobots. Blockchains possess several key properties needed to realize cellular-level nanobotic DACs. Already, blockchains are being investigated in test deployments for the high-load communication coordination of very-large scale IoT sensor networks. The automation of massive fleets of medical nanorobots in the human body could be similarly orchestrated. Further, medical nanorobots suggest a high number of agents and “transactions” where blockchains are easily able to log, track, and monitor any amount of activity from diverse agents. The secure nature of blockchain tracking is also a crucial feature for record-keeping and potential liability assessment in the medical context. For example, bio-cryptographic nano DACs could be used to improve information-gathering and efficacy in clinical trials, and record and transmit information directly regarding safety, adverse events, and side effects. Finally, remuneration as a standard blockchain feature might be useful for personal bio DACs. This could be directly in the case of transactional and payment channel consumption-based pricing. This could also be indirectly in the case of employing economic mechanisms like “pricing” as a points-based system for indicating demand, preference, priority, affinity, and other values.

Community Payment Channel DACs
One benefit of blockchains and DACs is the vast reach of the technology in automating the coordination of arbitrarily many individual units and levels-of-detail roll-up. For example, in the case of a national treasury’s banknote tracking system, there is registration and tracking at the level of individual notes, series, print runs, location, time, and assignment to various entities at multiple levels. Blockchain ledgers allow on-demand drill-down to inspect the minutest transaction whilst simultaneously accommodating the potential automation of arbitrarily-many levels of activity, all though one Merkle tree validation, and packages of smart contract DACs. For example, the administrative aspects of a country’s entire home mortgage system might be managed in DACs that federate different levels of detail across the industry. Multi-tier automation and coordination in blockchain DACs makes the possibility of very-large scale automation projects more feasible. There is a growing capability to be able to marshal planetary-scale endeavors whether externally in economies, weather systems, and space settlement, or internally in neural activity in brains, preventive medicine, and crypto-nanorobots circulating in the body. A second-order functionality afforded by the automated multi-layer coordination of blockchains is being able to deploy actions to coordinated groups. Community actions as opposed to unitary actions can be the focus of activity.

Community Payment Channel DACs - Examples
A straightforward example of community payment channel DACs is that many houses on a smart city electrical grid might choose to join the community payment channel for lower-priced electricity and power grid load-balancing. Coordination can be thought at the level of groups or wholes, not just individual parts, even if unified. Community coordination could be a useful mechanism in many contexts such as the cells of the body, the neurons of the brain, IoT sensor networks, and smart city operations. One example could be the ability to view hospital equipment inventories on a state-level or even national-level per smart property tracking blockchains. One benefit of this functionality is the ability to use new methods such as complexity math to orchestrate patterns. The kind of automation currently at stake is not just the simple causality of point-to-point transactions, but rather the complexity of prediction gradients or ecologies of interrelated behavior. Blockchains and payment channels are an unobtrusive yet appropriately granular tool for orchestrating and remunerating these complexities. Nanorobot grids could participate in a community payment channel DAC for resource access and consumption, including micronutrients, small molecules, drugs, and electrical stimulus; and also for purpose-based activities such as cancer-fighting waste remediation.

Geoethical Bio-congruency of Cryptographic Nano DACs
Bio-cryptographic nano DACs are not just an innovation with high potential functional use, they are themselves an example of complexity and geoethical nanotechnology whose detail, granularity, and integration suggests a well-formedness that respectfully corresponds to their potential use in the world. Ubiquitous blockchain-based nano-crypto DACs in the body could track, monitor, assess, and intervene more congruently at the level, scale, and scope of local corporeal activity since they themselves are in a form and operational cadence that is similar to that of the human body. This is merely one example of a more general trend in science and technology to have the tool more congruently fit the territory. The focus is to model, understand, monitor, and engage with natural processes in the full bloom of their own complexity and interrelation rather than on simple human-consumable causal models between point-to-point connections, which was the primary scientific method available.

Advanced applications: Neuro-bio-cryptographic nano DAC apps
Just as humans and machines collaborate on many macro-scale tasks in the physical world now, it is imaginable that nanomachines might collaborate with the human body for many functions in the future. One example of a standard activity for a cell monitor DAC could be working with RNA transcripts; tracking, blocking, producing siRNAs, and RNAis for gene silencing and interference in an extended application of current pharmaceutical efforts. Clearly these cellular transactions would need to be tracked and monitored, including for safety, liability, and remuneration purposes. Neural operations are an obvious venue for bio-cryptographic nano DACs. This could include working with the brain’s 100 billion neurons for the purposes of memory assessment, improvement, and life-logging. Beyond that, it could also include making backup copies, uploading, coordinating brain-computer interface (BCI) cloudmind participations, and automating in-brain information retrieval (personal voice assistants not just externally like Alexa Echo and Google Home but on-board interactive applications; literally voices in one’s head (if so-permissioned)). Nanorobotic DAC applications could use microbiomics as a less-invasive target site from which to provide resourcing applications such as connectivity, secure automated backup, energy replenishment, and drug delivery.

Self-instantiating Bio-crypto nano DACs
In the farther future, if bio-crypto nanorobots were to be truly autonomous DACs, they would sense a need for their genesis in the “tradenets” of bio-demand within a body, initiate a crowdfunding, begin operation upon its successful completion, and self-retire when there was no longer demand for its operations. The idea here is similar to concept of the self-owned Uber-type car that creates itself per sensing demand on a smart city tradenet grid, self-funds, self-operates, self-maintains, and self-retires. In a body, at the advent of a cancer or pre-cancer, for example per cellular threshold levels for mutational DNA copies being exceeded, there could be a trigger for a self-initiated nano-DAC crowdfunding to support in-cell cancer-extermination. This raises several questions such as the denomination currency of bio-DACs and also how the accountancy validation operation of mining is to occur. There could be different bio-crypto currencies such as micronutrients, small molecules, energy (ATP), electrical charge, and ideas. The obvious bio-currencies would be those already denominated by the body and used in the applications which the nano-DACs would be facilitating. In the smart contract programming, cryptocurrency principles like blocktime temporality (blockchain-based timing specifications) and demurrage (encouragement towards certain kinds of action-taking like full consumption) could be specified to optimize the management and operation of bio-currencies. For example, demurrage principles could be used for the periodic redistribution of brain bio-currencies such as ideas with its precursor neurotransmitters serotonin and dopamine (in the enhancement case), and memories with its precursor neurotransmitter acetylcholine (in the dementia repair case).

Advanced applications: Bio-currencies and Reciprocal bio-mining ecologies
Regarding mining, there would be different classes of security required by bio-nano DACs. Heart and brain operations would seem to be more sensitive, requiring a higher class of crypto-protection, and therefore a more robust mining effort. In general, the bio-mining operation could be architected similar to that of the smarthome IoT network. Interdependent blockchain ecologies could mine for each other, in a congruent participatory decentralized manner, where each ecology has the incentive to both maintain the network by accurately recording the transactions of other parties as their own survival is also at stake, and also to have their own bonafide valid transactions recorded for the same reason. In the smarthome IoT network example, one ecology of nodes can mine, or be the accountant for, another ecology, providing independent yet interdependent secure transaction-logging. The kitchen IoT sensors could log-mine for the bathroom sensors, and vice versa or round robin. Similarly, in the body, one cell ecology could provide the mining operation for another. The neural DACs could log-mine for the cardiac DACs (because they require the same high-grade security, validation, and anti-hacking measures), and the digestive system DACs could mine for the immune system DACs, and so on. Mining would presumably be a mix of internal logging uploaded periodically to external secure storage (storj) as there would be optimized energy-processing constraints governing the on-board processing capabilities of nanorobot DACs.

Conclusion: broader context of Bio-cyrpto Nano DACs
Beyond Bitcoin and the single-ledger implementations of blockchain technology underway in banking and finance, there is a whole new tier of applications that might be unlocked. The bigger message of blockchain technology’s distributed ledger system and smart contract DACs is that it is a software innovation that might enable a much larger scale of human endeavor in as many domains as applications can be envisioned and implemented. The bio-cryptoeconomy is a new mode of economic life. One speculative example was developed here, in the form of crypto-tracking DACs that could coordinate medical nanorobotic cell operations in the human body. Blockchain functionality is well-suited to very-large scale automation operations with the properties of secure transaction-tracking and flexible payment models that could help to facilitate a far-future deployment of bio-cryptographic nano DACs for both repair and enhancement.

Presentation slides: 11th Annual Terasem Workshop on Geoethical Nanotechnology:
Bio-cryptoeconomy: Smart Contract Blockchain-based Bio-Nano Repair DACs

Tuesday, October 27, 2015

Crypto Enlightenment: A Social Theory of Blockchains

There is something new and fundamental happening in the world which could be the start of the next enlightenment period. The core of this is shifting from centralized to decentralized models in all aspects of our lives, both individual and societally.

Cryptocurrencies (Bitcoin), blockchains, and decentralization) are not just about 1) digitizing and modernizing money, payments, economics, assets, legal contracts, and governance, thereby 2) accelerating the transition to the automation and actualization economy from the labor economy, but 3) more fundamentally, these factors are allowing us to re-explore our reality, and specify it as more internally-determined than externally-determined.



Societal Shared Trust is Algorithmic Trust
The tip of the iceberg is Bitcoin – digital money. Bitcoin runs on software called blockchain technology, which is a distributed ledger, a decentralized computational memory of human interactions. As individuals, we can place our trust in the computational system, and no longer need to trust institutions, third-party intermediaries like banks and governments, to coordinate our patterns of activity. Blockchains are a more trustworthy trust: algorithmic trust, not institutional trust.

Blockchain technology is technical (cryptographic ledgers); economic and political (a flatter more-extensible mode of organization); and psychological, sociological, and philosophical (new ways of conceiving reality). The real invitation and potentiality of blockchain technology is to radically rethink reality – what is it to decentralize everything we do and reconstitute life through a frame of abundance and immanence, attending to what is possible and desirable mindfully, not merely a reaction to a reality which seems determined by scarcity.

A New Philosophy of Economic Theory
A philosophy of economic theory is necessary since nearly all existing economic theories have taken scarcity as a central precept. These antiquated models configured by scarcity are weak philosophically because they are conceptually limited, and are also weak empirically since there is emerging and existing evidence of situations in the world where scarcity is not a parameter, and not the governing parameter. A ready example of this is digital goods, such as software or digital images, where there is essentially zero cost to producing another unit by copying the goods electronically.

Crypto Enlightenment is a Rethinking of Authority
There have been some paradigm-shifting moments in human history. The Enlightenment (1650-1800) concerned knowledge, and also importantly, authority. While there has been much rethinking and progression regarding knowledge, there has been less regarding authority since the modern notion of the individual as an agent in society arose during the Enlightenment. Now with the advent of blockchain technology and decentralized models, there can be a new consideration of authority. There is a possibility of constructing alternatives to centralized institutional power which has become a juggernaut of extraction instead of support; a less-trustworthy diminisher of rights and social goods instead of an extender and promulgator. Decentralized models empower the individual in radical new ways and call for the rethinking of authority for both the individual and society. Per the Internet revolution, we as individuals now taking self-responsibility for many activities such as deciding what and how we consume news media, entertainment, financial services, (stock-trading, credit services, portfolio management), and health services. Next is economic and governance systems.

To rethink the place and definition of authority, a philosophy of immanence is helpful and necessary. Immanence is the idea of self-determination from within; everything comes from within in a system, world, or person; structure and content are emergent and not pre-specified. Immanence contrasts with transcendence where everything comes from outside a system, world, or person; pre-determining the system externally per fixed specifications. One way of seeing reality is as immanence and transcendence; there is one side that is focused on recouping a pre-specified baseline ideal, and the other of open-ended immanence. Human emotion is an example from the natural world of baseline-immanence, where negative emotions (fear, anger) physiologically narrow possible pathways of action to fight, flight, or flee, where as positive emotions (love, compassion) trigger general, non-directional cognitive activation, a widened range of unspecified novel, creative, and unscripted courses of thought and action.

Much of human psychological activity might be said to be concerned with the attempt to attaining a baseline ideal that has been pre-specified and externally imposed, and as an ideal impossible to ever attain. Some of the contexts where these ideals impossibly govern behavior and psychology are ethics, justice, equality, liberty, subjectivation, and the pursuit of the good life. Attaining the baseline is an idea rooted in fixity, where the form (morphology) one begins with pre-determines possible outcomes. Baseline is a stance oriented to negating and critiquing, to narrowing, circumscribing, and closing-off; a ‘no’ energy. Certainly ideas of ideals may come from outside an individual, and the distinction is not acquiescing and adopting them wholesale, but introspecting as to how they would be useful appropriated individually for me; internally, reworked and reclaimed with autonomy to empower the individual. (Seeing how immanence and transcendence interact, Hegel terms this dialectics, or conversation of appropriation, as an immanent process of transcendence.)

The other side of reality is immanence, a determining from within. This is the open-ended stance of novel construction up and out from baseline into new territory; “yes-and” improvisation energy, collaboration, creativity, novelty, the new, thinking out-of-the box, greenfield, emergent, dynamic, serendipitous, flow, complexity, fractalization, and multi-dimensionality. Moving out open-endedly from baseline is an idea rooted in capability; growth is dictated by capacity (which can grow) and not morphology (which is fixed); capability and attitude determine possibility. Immanence is a stance oriented towards the affirmation of the positive, to “yes-and” energy.

Cryptocitizen Sensibility
The sensibility of the cryptocitizen is being in a stance of immanence with ourselves; trusting our internal selves more. There is more self-responsibility-taking; questioning, deciding, and designing which economic systems, political systems, communities, and labor systems (productive work effort) in which we would like to participate. The distinction is between ‘selecting governance services’ and ‘being governed,’ where increasingly, there is the possibility of a much higher degree of self-determination and self-creation in selecting the communities and structures in which we participate, particularly those related to economics and politics. Per a singularity-class technology like decentralized cryptographic models, these systems for organizing multi-party activity can scale way down to backgrounded trust-invoking microlevels in ways that were not previously possible in hierarchical models.

Abundance Theory of Flourishing
Theories of flourishing address how we might organize ourselves individually and societally towards the endeavor of the good life. Leaving aside the problematic language and valorization of the ‘good’ life, there are been three traditional types of theories of flourishing (Parfit, Reasons and Persons, 1984). Theories of flourishing have been hedonistic (seeking the greatest balance of pleasure over pain), conative (seeking desire fulfillment), and objective list theoretic (seeking to list other aspects that might constitute well-being in addition to pleasure and desire fulfillment).

1. Immanent Flourishing of Abundance: Sustenance + Actualization
A new theory can be proposed in line with modern themes, an Abundance Theory of Flourishing. An abundance theory of flourishing can be developed first through the baseline-immanence framework. The traditional conception of abundance has most-often been one-sided, focusing exclusively on reaching the baseline of post-scarcity, having all needs for material goods satisfied. Instead, an immanence theory also envisions the open-ended upside of potentiality that is now possible with this baseline of material goods satisfaction having been reached. An abundance theory of flourishing includes the two sides of reality, focusing on both survival and actualization. To count as flourishing, there is not just an alleviating of suffering in the form of having sustenance needs met, there would also need to be something in the positive register of immanence, allowing new and emergent potentiality to develop; this would constitute a true immanent flourishing of abundance.

2. Scarcity is a Social Pathology
An abundance theory of flourishing can be developed second through conceiving of scarcity as a social pathology. The conceptualization is that scarcity is not merely a constitutive parameter of existing economic theory, but that more pervasively, the notion of scarcity has been a psychologically harmful construct of thinking that needs to be overcome for a fuller realization of human potential. In an abundance theory of flourishing, scarcity is a social pathology to be resolved. Part of the justification for seeing scarcity as a social pathology is noticing the new and contributive social goods that are unavailable in the scarcity model and created by abundance. Some of these social goods include certainty, availability, reduced contingency, willingness, and cognitive easing and cognitive surplus.

Abundance creates a psychology of certainty and availability, a reliable ongoing feeling of certainty that material survival needs will be met, as opposed to the continuous uncertainty and attending-to required by scarcity. Much current human cognitive and physical effort (as individuals and groups; families, corporations, institutions, and nation-states) is devoted to anti-scarcity measures: hoarding, manipulation, and control for the purpose of ascertaining the future availability of resources. It is like doing for emotional and cognitive attending what just-in-time inventories did for manufacturing; it is an invoking of certainty and reliance about the real-time availability for need fulfillment. Through abundance, there could be the considerable social good of relief and certainty, where a whole class of cognitively-exertional activities drop off the reality of what has to be considered for basic living. This would be unprecedented in human history, a trustable source of having basic needs met such that we do not even have to think about this.

Cryptosustainability: Collaborating in the Self-sustaining Micropolis
The cryptocitizen sensibility of the individual extends to embodying new ways for the individual to be in society. Reviving the notion of the Greek statesman, there is a sense of civic duty to serve the republic. This can be recast as the self-directed cryptocitizen’s sense of civic collaboration, where part of meaning and purpose may be derived from participating in community sustainability. The new polis could be the micropolis as groups of individuals form self-sustaining cryptocommunities.

Peergrid Cryptosustaining Micropolises
The cryptocitizen’s civic collaboration is through providing peergrid resources. Here in communities of 20-50, I have a solar panel on my roof, my neighbor has a City Blooms hydroponic greens unit, the next person has a Tesla power wall, the next person is an ISP and hosts a Bitcoind node; etc. Each of us provides a piece of peergrid infrastructure supporting the overall sustainability of us as a community. The kids paper route of the future is maintaining the hydroponic greens unit. Individuals are civic infrastructure providers. Peergrids then are local community mesh networks of all needed resources including physical (energy, ICT, food, infrastructure) and emotional (empathy, belonging, contribution, meaning). Peergrid cryptosustaining micropolises can then federate, so the smartcity becomes a federation of local autonomous self-sustained communities. Blockchains are the trustable unobtrusive system for managing all of this in the background, allowing communities to move beyond free rider problems and other concerns that have prohibited easeful cooperative collaborations. Blockchains facilitate the ownership of community infrastructure (financing, transferring, operating, drawing assessments) in a community-based manner.

Crypto-Enlightenment Governance
Thus through the volitional responsibility-taking of the cryptocitizen as an individual self-determining economic and political systems of choice, and as an individual in society, collaboratively participating in self-sustaining micropolises, governance can be recast as a process of support (immanence) as opposed to extraction (baseline erosion). The actualization economy can thereby focus on (1) sustainable material survival and (2) the social goods of liberation: self-respect, self-esteem, and self-realization. Cryptosustainability communities are finally a means of prescriptively destabilizing non-value-added elites, implementing the original esprit of Rousseau, Rawls, and Locke.

Blockchains: a Grey Goo-Resistant Singularity-class Technology
The crypto-enlightenment includes seeing the potential impact of blockchains beyond the flexible recasting of human economic and political processes; blockchains are singularity-class technologies. A singularity-class technology is a technology for the large-scale trustful automated orchestration of vast and detailed processes. The power of singularity-class technologies, this level of technological orchestration of processes, possibly without our human participation, has given way to the fear of runaway technologies. The fear of runaway technology is in the same form, and persists across all singularity-class technologies, that AIs, robots, nanobots, 3D printers, matter compilers, space terraformers, synthetically-replicating bioengineered life, etc. will take over the world.

Blockchains are a potential solution to the fear of runway technology in any of these areas. The fear of runaway technology can be allayed in noticing that the very nature and design principles of singularity-class technologies, certainly blockchains, and by extension, perhaps any singularity-class technology, are that the large-scale orchestration cannot proceed otherwise than through a system of checks and balances. The key blockchain functionality principles are being a very-large scale automated system of checks and balances where all ‘transactions’ must be validated, confirm via a reputation or other mechanism, employing algorithmic trust and smartnetwork consensus mechanisms.

Singularity-class Technology Safety: Consensus Signing and Design Signing
This structure can carry into the implementation of singularity-class projects like friendly AI, autonomous lab robots (on-chain DAC IP discovery tracking), blockchain nano-compilers (Grey Goo worry: unchecked nanotech proliferation). Two key safety design principles in singularity-class technologies are 1) the required confirmation of any transaction or activity by smartnetwork consensus mechanisms which prevents non-bona fide behavior, and 2) signing; all transactions cannot help but be signed. Just as physical-world engineers sign the bridges they build (literally, as a claiming and responsibility mechanism), synbio, AI, space, etc. engineers cannot help but ‘sign’ their own building blocks like DNA designs. With traces as an inherent feature of technology, signing is unavoidable, so singularity-class technologies like propositional nanotech constructions would be either 1) signed by bona fide engineers, and 2) not be able to avoid having a traceable signature by befouled players (intentionally malicious or otherwise).

Spacechains: Blockchains in Space
A further as yet unconsidered application area for singularity-class technologies like blcockhains is spacechains: blockchains in space. The idea is that blockchains are not just an Earth-class technology, but also an extra-terrestrial-class technology for space projects. Blockchains can be used to coordinate very-large Earth-class terrestrial projects like billion-member DNA databanks and EMRs, and space-class problems too. Some of the many potential space applications of blockchains include space settlement, terraforming, asteroid mining, fuel generation, bombardment monitoring, and basic science observation. There could be colored-coin ledgers for energy, settlement, transport, and supplies. Further, spacechains are a fragility alleviation mechanism for terrestrial applications. It is surprising that we do not yet have backup for many terrestrial operations. Spacechains could help with this, providing data center back-up, geomagnetic solar protection, existential risk reduction, and Bitcoins in space (where there is an articulated project, (BitSats (like CubeSats)).

Curious what "Bitcoin and Blockchain are? Educational Resources: 
What can Blockchain do for you?
The real value of bitcoin and crypto currency technology - The Blockchain explained

Sunday, March 01, 2015

New Legal Regime for Blockchain-based Smart Property and Smart Contracts?

Beyond the already wide-ranging digital currency and financial transaction applications for blockchain technology, there is another class of applications that could allow a complete reconfiguration of law and government. Blockchains are a new form of decentralized information technology, the trustless cryptographic public ledger system that underlies digital currencies like Bitcoin. Some of these potential application in law and government are that in the future, all property (hard and soft assets, and intellectual property) could be registered and transacted via blockchains as smart property. Likewise, all forms of legal agreements, contractual relationships, and governance could be enacted through code-based smart contracts.

An important consideration raised by the possibility of smart contracts and systems of cryptographically-activated assets is whether a new body of law and regulation is required to distinguish between technically-binding code contracts, and more flexible legally-binding human contracts. Contract compliance or breach is at the discretion of human agents in a way that it is not with blockchain-based or any kind of code-based contracts. Since it could be nearly impossible to enforce smart contracts with law as currently enacted (for example, a decentralized program already launched and running is difficult to control, regulate, or sue for damages), the legal framework is essentially pushed down to the level of the contract. It is not that lawlessness and anarchy would ensue with smart contracts, but the implication is that legal frameworks would become more granular and customized to the situation. Parties agreeing to a contract could choose a legal framework just as jurisdiction is selected as a parameter now. Thus smart contracts impact not just property law and contract law, but more broadly the notion of the social contract within society.