The World Stem Cell Summit in Baltimore MD held September 21-23, 2009 attracted several hundred professionals to discuss contemporary science, industry and societal perspectives on stem cells. Attendance was high, but down from last year and, similar to cancer meetings, a key theme several keynote speakers acknowledged was
the overall lack of truly meaningful progress in stem cell research in the last twenty years.
Science Focus: Safe Stem Cell Generation
The science tracks featured current research in different stem cell areas including the production of safe hESC (human embryonic stem cells) and iPS (induced pluripotent stem cells) for use in regenerative medicine, the research and therapeutic use of mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs) and reports from specific sub-fields: cancer stem cells, cardiovascular stem cells and neural stem cells. Overall, the work presented was incremental and in many cases, confirming what has been known already, such as a growing confirmation that cancer stem cells are probably responsible for triggering the resurgence of cancer but cannot at present be distinguished from other cells at the time of tumor removal.
Contract Research Demand: Cell Therapies and Recombinant Proteins
One stem cell area experiencing growth is contract research organizations, the outsourcing tool of choice for research labs and pharmaceutical companies in the production of biological materials. For large contract research manufacturing such as Basel, Switzerland-based Lonza, the biggest demand area is in cell therapies. Cell therapies denote the introduction of any type of new cell into other tissue for therapeutic purposes, but in the current case generally means any variety of stem cell-based therapies. Other large contract research manufacturing organizations such as Morrisville, NC-based Diosynth (owned by Schering Plough) lead in biologics (antibodies, protein production) production, an important area for nextgen biotech where synthetic biology could have a big impact.
For smaller contract research manufacturing organizations producing test compounds (e.g.; 1 liter for $10,000) and scaling to Phase I and II clinical trial quantities such as Baltimore MD-based Paragon Bioservices, the biggest demand is for recombinant proteins. Recombinant proteins are created by inserting recombinant DNA into a plasmid of rapidly reproducing bacteria and can take many useful forms such as antibodies, antigens, hormones and enzymes.
Venture capital hot topics: zinc fingers, RT PCR, tech transfer
Zinc fingers (small protein domains that bind DNA, RNA, proteins and small molecules) have been surfacing in a variety of cutting-edge biotech innovations. In July 2009, St. Louis, MO-based biotechnology chemical producer Sigma-Aldrich (SIAL) announced the creation of the first genetically modified mammals using zinc finger nuclease (ZFN) technology to execute modifications such as taking away the tail of the zebrafish. A second example of recent landmark research involving zinc fingers is that of Carlos Barbas at Scripps who uses zinc finger proteins to reprogram serine recombinases as a more specific alternative to the homologous recombination method of genome modification. In addition, the Barbas lab has a useful web-based zinc finger protein design tool available for public use, Zinc Finger Tools.
Real-time PCR offerings continue to expand and flourish with declining prices as startup newcomer Helixis announced a $10,000 real-time PCR solution at the conference.
Bethesda, MD-based Toucan Capital, a leading investor in stem cells and regenerative medicine discussed their sixteen interesting portfolio companies such as San Diego CA-based VetStem who is conducting joint and tendon stem cell therapies for race horses.
Johns Hopkins has one of the country’s leading technology transfer programs, licensing a growing number of technologies each year (nearly 100 in the last fiscal year), and has a searchable, though not extremely user-friendly, website.