
Figure 1 illustrates how supercomputing power has been growing in the last five years, starting at (a paltry) 136.8 gigaflops in June 2005, and experiencing four solid doublings in growth. This rate of progress is estimated to continue, and usher in the exaflop era of supercomputing by mid-decade. The IBM Roadrunner at Los Alamos was the first to achieve speeds over one petaflop in June 2008 and held onto the fastest computer seat for three measurement periods, then was surpassed by the Cray Jaguar at Oakridge for two measurement periods. China has now captured the fastest supercomputer ranking with its NUDT MPP.
Figure 1. Growth in Supercomputing Capability: Jun 2005 - Nov 2010
The world's supercomputers are working on many challenging problems in areas such as physics, energy, and climate modeling. A natural question arises as to how soon human neural simulation may be conducted with supercomputers. It is a challenging problem since neural activity has a different architecture than supercomputing activity. Signal transmission is different in biological systems, with a variety of parameters such as context and continuum determining the quality and quantity of signals. Distributed computing systems might be better geared to processing problems in a fashion similar to that of the brain. The largest current project in distributed computing, Stanford protein Folding@home, reached 5 petaflops in computing capacity in early 2009, just as supercomputers were reaching 1 petaflop. The network continues to focus on modeling protein folding but could eventually be extended to other problem spaces.